

Modular RICH Detector Simulation Detector Update

Cheuk-Ping Wong
Georgia State University
07-18-2016

Previous Simulation Result

Launch at (x,y)=(-24,-24)mm

Beam Test: run 88

Simulation

120 GeV Proton beam

Previous Simulation Result

Launch at (x,y)=(-24,-24)mm

- Different shapes of background/noise
 - strong unknown background/noise

Simulation Update

Fresnel lens

- 5.25" x 5.25"
- 262 grooves (100 grooves/inch)
- Focal length = 76.2mm
- Absorption length = 25.25cm
- Lens thickness 2.04mm

Photon sensor

- Effective area = 4.8cm x 4.8cm (each sensor)
- Pixel size = 6mm x 6mm
- 1.5mm glass window

Simulation Update

Internal Reflection inside Glass Window

After Detector Update

Simulation Setup

- Full Setup with Marco's aerogel
- 120 GeV Proton
- Launch perpendicular to the xy-plane

In simulation

- 1000 protons
- Beam size : diameter = 1cm
- Energy cut applied in analysis code

Simulation Analysis

Hit position is shifted toward the center to match the beam test display

Launch at (x,y)=(-24,-24)mm

Beam Test: run 88

풀¹⁶ 220 200 180 12 160 140 10 120 100 -80 60 40 20 16 12 14 PMT pixel

Most of the background from the glass window are confined in one quadrant because of the gap between glass window

Simulation

All Photon Hits with generated position shown on z-axis

Photon hits emitted

Beam Position

Summary

Detector Update

- Separated sensor plane to four individuals
- Added glass window on each sensor

Follow Up

Insert Copper sheet to mimic photon sensor electronics